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The current article reports on the further development of a new 
technique for the computer simulation of the quasi-static mechanics 
and scalar transport properties of sphere assemblages. In an exten- 
sion of a previous 2D simulation to 3D, we have developed an 
improved computat ion based on several innovations: a shuffling 
algori thm to rapidly generate random loose-packed configurations 
of particles; a microcell-adjacency method to accelerate particle- 
contact search; a relaxation method to overcome singularities in 
the static transport equations; and a simulated mechanical compres- 
sion to generate dense random initial states. The improved algo- 
rithm allows for 3D simulations on a workstat ion platform. As major 
results, the dilatancy (volume expansion) computed for random 
dense-packed assemblages is found to depend on interparticle fric- 
tion, contrary to the classical Reynolds hypothesis. Also, the use of 
linear-elastic contacts is found to be valid near the rigid-particle 
l imit of interest here. Experimental data from ("tr iaxial '" compres- 
sion) tests agree well with the simulations of both the shear strength 
and the electrical conductivity of sphere assemblages, when proper 
account is taken of the actual electrical contact resistance between 
steel balls as a function of load. One major conclusion is that scalar 
transport can serve as a useful macroscopic probe of particle-con- 
tact topo logy in granular media. © 1995 Academic Press, Inc. 

I. INTRODUCTION 

Granular media are materials composed of distinct, indepen- 
dently mobile particles which interact only at localized interpar- 
ticle contacts. Because of the analytical intractability, computer 
simulation has become a widely accepted method for theoretical 
study of the mechanics. As in other branches of multibody 
physics, such simulation allows one to extract any desired mi- 
croscopic information at any stage of a computation, and "ex- 
periments" can be performed numerically that would be virtu- 
ally impossible physically. Many previous works show, 
moreover, that numerical simulations can describe qualitatively 
the overall continuum mechanical behavior of real granular 
materials [20, 21, 50, 51, 18], although current numerical stud- 
ies have not progressed much beyond idealized particle shapes 
such as the disks and spheres, considered here, or ellipsoids. 
Also, while the number of particles is small compared to real 
granular systems such as sand masses, sample-size effects are 
partly overcome by the use of periodic-cell models. As in other 

branches of physics, it is not unreasonable to hope that certain 
universal aspects of the collective behaviour of large assem- 
blages can be captured by simulations on relatively small assem- 
blages and simple particle shapes. In any event, this appears 
to us a compelling first step in understanding more complex 
systems. 

We recall that the behavior of granular media depends gener- 
ally on a variety of factors, such as particle volume fraction or 
"void ratio," interparticle friction, particle shape, and micro- 
structural contact topology or "fabric," to name the most prom- 
inent. While granular fabric is believed to be one of the most 
important factors determining the overall mechanical response 
to deformation, the direct measurement of fabric in real granular 
materials such as sand [41,42] is difficult and tedious. It would, 
therefore, be highly desirable to ascertain whether fabric can be 
related to or inferred from measurements of other macroscopic 
properties. Indeed, dynamic shear moduli and the corresponding 
set of elastic constants obtained from wave-speed measurement 
are found to contain such information [15, 31, 1]. 

Apart from various mechanical properties, it is plausible, 
based on experience with the optical and transport properties 
of other materials, that a scalar transport property such as electri- 
cal or thermal conduction, can provide yet another macroscopic 
indicator of fabric. The effective conductivity of granular mate- 
rials depends not only on the conductivities of solid grains and 
any interstitial (or "pore" )  fluid, but also on void ratio and 
fabric. Attempts have already been made to study the evolution 
of mechanical anisotropy of water saturated sands and clays 
by monitoring electrical conductivity [38, 6, 3, 4]. However, 
since sand grains or soil particles are themselves not electrically 
conductive, the current must be conducted by the pore water, so 
that conductive anisotropy mainly reflects void-space geometry. 
While the latter may reveal some aspects of internal structure, 
it does not serve as a particularly good indicator of granular- 
contact topology. In particular, the variation of interparticle 
forces in load-bearing chain structures is not captured by pore-  
fluid conductivity, a fact which provides much of the motivation 
for the present of conductivity simulations and experiments. 

In Section VI, we derive an expression for the effective 
conductivity of idealized granular assemblages and we review 
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the mean-field approximation proposed by Batchelor and 
O'Brien [10]. Numerical simulations, mainly aimed at the study 
of the microstructural properties are presented in Section VII, 
and the computer simulations are compared with experiment 
in Section VIII. 

II. THE QUASI-STATIC METHOD 

Currently, one can identify two main classes of numerical 
simulation for the mechanics of granular materials, namely, the 
dynamic and the quasi-static. The former, based on the full 
Newtonian equations of motion and referred to as the "distinct 
element method" (DEM) in the older literature, was first devel- 
oped by Cundall and coworkers [20] and has been widely 
employed since [21, 50, 22, 51, 12, 16, 8]. However, various 
artificial damping procedures are usually employed in this 
method in order to suppress parasitic particle vibrations, an 
artifact which becomes particularly bothersome if one is ulti- 
mately interested only in quasi-static conditions. For this reason 
among others, direct quasi-static simulation has been receiving 
increased attention in recent years [46, 35, 17, 9, 27, 7], even 
though it too involves computational artifacts, as discussed 
below and in the previous work of Bashir and Goddard [9]. 
In contrast to the latter work, which involved supercomputer 
implementation of a 2D simulation, a major goal of the present 
effort was to develop a sufficiently efficient 3D simulation to 
run on widely available workstation platforms. 

The present quasi-static simulation is based largely on an 
improved version of an earlier method [9], in which we recall 
that particle motions are determined as follows: given a small 
homogeneous incremental deformation imposed on an assem- 
blage in a state of mechanical equilibrium, one first imparts to 
each particle a rotation and translation defined by the mean 
incremental deformation of the assemblage. This corresponds 
to the mean-field approximation of Jenkins and Strack [32], 
which leads to unbalanced elastic forces and torques. In the 
present algorithm, the assemblage is then restored to a new 
equilibrium configuration by means of incremental motions or 
"fluctuations" of each particle about the mean. Thus, unlike 
dynamic simulations, in which the full Newtonian dynamical 
equations are employed to update particle configurations, the 
fluctuating displacements of individual particles are determined 
statically by a global stiffness matrix and a system of equations, 

K x = b ,  (1) 

where K is the "grand stiffness matrix," x is the vector of the 
fluctuating translations and rotations of the particles, and b is 
the unbalanced force arising from the mean motion [9, 57]. 
The above procedure is repeated until the force and torque 
balances for each particle are satisfied to within some preset 
tolerance. The assemblage is allowed to expand or contract 
volumetrically to maintain a global control pressure or stress 
at some desired level, which thereby enables one to compute 
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FIG. 1. Flowchart for the algorithm (solid fraction control used only in 
initial packing stage). 

(Reynolds) dilatancy. Figure 1 presents a flowchart for the 
algorithm, and Appendix I summarizes the main equations and 
the computation of the stiffness matrix, which are extensions 
to 3D of the equations given by Bashir and Goddard [9]. A 
computer program listing is given by Zhuang [57]. 

At any stage of deformation, the stiffness matrix K is deter- 
mined by the local contact stiffness between particles. Although 
various elastic contact models such as that of Hertz [26] lead 
to a nonlinear force-displacement relation for interparticle con- 
tacts, we mainly employ here a linear contact relation for the 
normal and tangential forces between particles. For our pur- 
poses, the contact elasticity serves to eliminate static indetermi- 
nacies in the idealized limit of rigid particles, which is of 
primary interest here. We shall, however, verify that the exact 
dependence of stiffness on contact force appears not to be of 
paramount importance. As in numerous previous works, the 
tangential slippage at contacts is assumed to be governed by 
Coulomb sliding friction [27, 57]. 

As pointed out in Ref. [5], the matrix K in (1) becomes 
singular whenever any cluster of particles loses contact with 
the remainder, giving rise to "neutral" or "zero-frequency" 
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where, i = 1, 2 ..... n, and j = l, 2 ..... N. A third matrix Ap 
is then used to represent the adjacency of two particles: 

1, if particles i and j are adjacent 

Ap( i , j )=  0, otherwise, 

where, i, j = 1, 2 ..... N, as determined by their occupancy of 
adjacent or nonadjacent microcells. This matrix can be ex- 
pressed as the matrix product: 

elastic vibrational modes and a finite-dimensional null space 
for K. To overcome this singularity we utilize, as an improve- 
ment over Ref. [9], the classical relaxation method [48] as our 
linear-equation solver, which effectively yields a singular value 
decomposition to eliminate the zero-frequency modes. As dis- 
cussed next, our computation also includes a "shuffling" algo- 
rithm for rapidly generating an initially random loose-packed 
configuration of particles and an improved microcell method 
to further accelerate particle-contact search [9, 27]. 

Ap = OcTAcOc. (2) 

Once the microcell adjacency matrix Ac is established, it 
remains unchanged since the microcell topology is invariant 
under homogeneous deformation. Upon determination of the 
occupancy matrix Oc at each deformation step, the particle 
adjacency matrix Ap can be found easily by the simple operation 
(2). However, (2) is computationally equivalent to 

Ap(i,j) = Ac(map(i), map(j)), (3) 

III. CONTACT DETECTION VIA MICROCELLS 

To simulate pairwise interactions in a system of N particles, 
it is generally necessary to search for all particles within the 
range of spatial interaction of a given particle. In general, one 
needs N(N - 1)/2 such searches, including a time-consuming 
evaluation of particle separations, a nontrivial task when the 
number of particles is large. However, the time spent on search- 
ing can be reduced to O(N) by means of spatial microcells [2, 
27] and the associated adjacency matrix. 

In the 2D case, for instance, the deformable simulation cell 
is divided into regular lattice of nm X nm initially square 
microcells as shown in Fig. 2. A microcell is small enough 
to contain the center of at most one particle throughout the 
subsequent cellular deformations. All microcells are then la- 
beled ordinally. For each microcell, the definition of adjacent 
microcells may include a neighborhood extending several mi- 
crocell layers outward, depending upon the range of the pair 
interaction considered. Whatever the range, the ~adjacency of 
microcells is defined by a matrix Ac with elements: 

j- 1, if microcells i andj  are adjacent 
Ac(i,j) 

l 0, otherwise, 

where, i , j  = 1, 2 ..... n (n = nm X nm), which is nothing more 
than the connectivity matrix of the associated graph [53]. We 
next define a second matrix Oc to represent the occupancy of 
microcells by particles: 

J ' l ,  ifmicrocell i is occupied by particlej 
Oc(i,j) 

l 0, otherwise, 

where map defines a mapping array whose element map(i) 
equals the ordinal number(I, 2 ..... n) of the microcell occupied 
by particle i and which, therefore, corresponds to the row vec- 
tors of Oc. The method appears substantially equivalent to the 
"cell-index/linked-list" method of molecular dynamics [2]. 
Based on the computed particle adjacency matrix Ap, the cur- 
rent program determines all particle contacts, which permits 
construction of the stiffness matrix and calculation of contact 
forces. 

In our rigid-sphere simulations, the size of the cubical micro- 
cell is chosen such that its largest diagonal is always equal to 
the smallest particle diameter in the system to assure that not 
more than one particle simultaneously occupies a given micro- 
cell. Furthermore, the largest particle diameter defines the cutoff 
distance within which one must search for potential contacts 
with neighboring particles. For a 2D monodisperse disk assem- 
blage, therefore, two surrounding layers will be sufficient to 
cover the cutoff distance, which means there are 24 microcells 
adjacent to each microcell. 

At the start of a simulation the microcell adjacency matrix 
Ac is constructed and remains unaltered throughout the compu- 
tation. At each deformation step, whenever particles move to 
new positions, the mapping array is updated, which is an inher- 
ently rapid process. For a given particle, we need only look in 
the neighboring 24 microcells surrounding its microcell to find 
the adjacent particles. In the worst case, 24 searches are required 
if all neighboring microcells are occupied. Therefore, 12N pro- 
vides an upper-bound on the total searches necessary if we 
consider a pair of neighboring particles as one search. 

In reality, the number of searches required depends upon the 
number of particles lying within the cutoff distance and, hence, 
upon the system density and configuration. In a 2D random 
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particle assemblage, the average number of searches is far less 
than 24 per particle. In fact, in the course of our computations, 
the average number of searches for each particle is found to 
be about six for random loose-packed, and 11 for random dense- 
packed monodisperse disk systems. Therefore, the total number 
of searches is approximately 3N and 5.5N, respectively. 

IV. GENERATION OF INITIAL RANDOM LOOSE 
PACKINGS 

In the past 30 years or so, random monodisperse packings 
of disks and spheres have been studied extensively by both 
experimental and theoretical means, in part because they serve 
as useful models for a variety of amorphous materials such as 
molecular fluids and glasses, as well as for granular materials 
and porous media. Dense ordered packing, dense random pack- 
ing, and loose random packing represent three important ideal- 
izations. The dense ordered packing for rigid spheres of equal 
radii (monodisperse) has a density equal to 0.7405 in 3D (FCC 
or HCP). Similarly, the density is equal to 0.9069 in 2D (triangu- 
lar). For dense random packings, it is generally believed that 
the densities fall into a range 0.62 to 0.66 for 3D and 0.81 to 
0.87 for 2D [13, 25, 33, 45, 55]. 

In a previous related study of 2D disk assemblages [9], two 
distinct algorithms were employed to generate two types of 
assemblages: imperfect triangular close-packed for the mono- 
disperse assemblage, and pseudo-gravitational packing for the 
polydisperse. Recognizing the limitation of those algorithms in 
generating random isotropic configurations of arbitrary density, 
we have developed a new algorithm capable of densifying an 
initially random loose configuration to any feasible desired 
density by means of cyclic shear under isotropic confining 
pressure, as discussed in Section V below. (One could if desired 
add body forces such as gravity which we shall not consider 
here.) We discuss here the major steps in generating random 
loose packings. 

A. Shuffling 

For the purposes of various Monte Carlo simulations [2], 
there are many ways of realizing random sequences, the conven- 
tional one being the standard random-number generation 
(RNG). For the purpose of repeatedly generating random parti- 
cle assemblages in a way which is faster than the (built-in) 
random number generator available to us, we have developed 
a different way of generating random sequences by means of 
a "card-shuffling" algorithm. The idea is to degrade the order 
of a given sequence by means of a certain number of "riffle" 
shuffles. In our algorithm, a variant of the riffle shuffle is used, 
wherein each shuffle consists of one random "cut"  and "fl ip" 
and one interlacing shuffle [23]. 

It is possible to make fairly rigorous theoretical estimates 
based on Shannon's theorem which suggests, incidentally, that 
seven riffle shuffles are sufficient to randomize a deck of 52 
cards [23]. With this information as a guideline, a shuffling 
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FIG. 3. A comparison of autocorrelations for the shuffling algorithm and 
the random number generator. 

algorithm was implemented for rerandomizing a given loose 
random packing [57]. In order to compare our shuffling algo- 
rithm with a (built-in) random-number generator, we have cal- 
culated the autocorrelation between the shuffled sequence of 
50 numbers and an initial ordered sequence, as well as the 
autocorrelation between two random sequences obtained by the 
random number generator. Let S(i) represent the elements, i = 
1, 2 . . . . .  n, of an n-member sequence; then, we employ as 
autocorrelation function between two such sequences S, and $2 
the formula 

a = (4) 

which treats the sequences as cyclical. 
To compare this shuffling algorithm with a random number 

generator, we have computed the autocorrelations between the 
shuffled sequences of 50 numbers and the initial ordinal se- 
quence as a function of the number of shufflings. Similarly, 
we also computed the autocorrelations between the first, second, 
and succeeding sequences with the first sequence of 50 random 
numbers generated by the built-in RNG in our computer (a HP- 
730 workstation). Figure 3 suggests that sequences of random 
numbers generated by the shuffling algorithm are as random 
as those obtained by the RNG, even when we employ only 
seven riffle shuffles. 

To compare performance in speed, we have monitored the 
CPU time required by both techniques and find that the riffle 
shuffle is approximately four times as fast as the RNG. While 
one might obtain superior randomness with specifically devel- 
oped, "portable" RNGs, it is not evident to us that speed would 
be improved, a matter which may be worthy of further study. 



IDEAL GRANULAR ASSEMBLAGES 335 

While it turns out that speed of the packing algorithm is not 
highly important for the large-strain simulations of the present 
study, it would be crucial to the investigation of the effects 
of packing parameters on the small-strain properties and the 
stability of sphere packings [26]. 

B. Filling Microcells 

In our packing algorithm the size of a microcell is chosen 
sufficiently small so as to contain the center of not more than 
one single particle under any circumstance, but also sufficiently 
large so as to minimize the total number of microcells. For 
example in 2D, if a rectangular microcell with two sides Ax 
and Ay is subject to a simple shear, the microcell is deformed 
into a parallelopiped as illustrated in Fig. 2. If the largest 
diagonal of the latter is chosen to be equal to the smallest 
particle diameter, so that no two particles can simultaneously 
occupy the same microcell during the deformation, we there- 
fore have 

drain 
= ~ (5) 

Ay X/'(y .... + r,-,)- + 1 

where 

r = AxlAy,  (6) 

drnin is the smallest particle diameter, and Ym,x is the shear strain. 
Usually, the ratio of two sides, is chosen as unity. From the 
assumed initial density and the known total particle volume, 
we estimate the size of the simulation cell which is then divided 
into nm X nm microcells (Fig. 2), labeled ordinally from 1 to 
n (=nm x nm). 

To place N particles randomly in the simulation cell, we 
generate a random sequence of miocrocells by employing the 
shuffling algorithm described above. We then pick a mierocell 
from the random sequence and place a particle randomly within 
it, using successive trials when necessary to avoid overlap 
with previously placed particles, until all N particles are placed 
successfully. Figure 4 shows one such random loose-packed 
configuration for 132 disks. 

V. THE RELAXATION ALGORITHM 
AND INITIAL PACKING 

In the present mechanics simulation, we utilize the classical 
(Southwell, [48]) relaxation method to solve Eq. (1). We recall 
that relaxation, an iterative method, involves two procedures 
to accelerate convergence. First, the relaxation order is deter- 
mined by searching for the residual (Si)m~ (the difference be- 
tween the fight-hand and left-hand scalar components of Eq. 
(1), evaluated at the current value of x in a given iteration), 
of greatest magnitude ISil then "relaxing" the corresponding 
equation by calculating a new value x such that (SDm~, = 0. 

FIG. 4. 
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Random loose-packed conliguration for 132 disks (density = 0.43). 

This modifies all other residuals, which also depend on x. Next, 
we employ a rapidly converging relaxation mode that alters 
only that element .t) of x having coefficient K~, with the largest 
absolute magnitude IK,jl. The procedure is applied repetitively 
until all the residuals satisfy a preset convergence criterion on 
some norm NS[[ (in our calculations, the standard Euclidean 
norm). The fluctuations thus determined serve to move only 
those particles, or particle clusters, having nonequilibrated 
forces or moments. Hence, the centroids of isolated clusters do 
not fluctuate, and we avoid the singularity in Eq. (1). We 
believe, incidentally, that such a technique might be useful in 
various types of percolation problem. 

The relaxation method is particularly effective for the initial 
mechanical packing, since in the early stages, the number of 
particle contacts is small, and only those particles not in equilib- 
rium need be moved. Furthermore, relaxation always eliminates 
the maximum unbalanced force by making the minimal adjust- 
ment of particle configuration. 

For both the packing stage and the subsequent deformation, 
the (Cauchy) stress tensor for the assemblage is computed from 
the standard quasi-static formula, given, e.g., by Bashir and 
Goddard [9]. After randomly placing N particles in the simula- 
tion cell, we impose a cyclic shearing deformation (static "jig- 
gling") on the system and simultaneously maintain an isotropic 
confining pressure (as a numerical control on the trace of the 
stress tensor). During compaction the particles are treated gener- 
ally as frictionless, so that contacts slide freely and the system 
densities more quickly. Cyclic deformation further destroys 
load-bearing granular chains and speeds up densitication. Our 
packing algorithm appears capable of bringing an initially loose 
configuration to a random dense state having any desired feasi- 
ble density. Figure 5 shows one such 2D random dense- 
packed system. 

To provide some test of initial randomness, the radial distri- 
bution functions g(r) for the monodisperse assemblages have 
been computed and compared with those generated by the 
Percus-Yevick (P-Y) equation of statistical mechanics and by 
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configurations of 132 disks (discrete points), compared with the M-C radial 
distribution function (solid curve). 

a Monte Carlo (M-C) simulation [52, 54, 56]. Figure 6 shows 
the smoothed (i.e., average) g(r) distribution function for 100 
realizations of  an initially loose-packed configuration of  132 
disks (density = 0.43). Figure 7 shows the g(r) for 100 realiza- 
tions of  dense-packed configurations of  132 disks (density = 
0.80, close to those for 2D random dense packing). For 3D, 
Fig. 8 shows the g(r) for 30 realizations of  loose-packed con- 
figurations of  132 spheres (density = 0.27). Finally, Fig. 9 
shows g(r) for 10 realizations of moderately dense-packed con- 
figurations of  90 spheres (density = 0.58). We note a weak 
split second peak, reminiscent of Finney's [25] experimentally 
determined radial distribution function for a dense packing of  
8000 steel balls, where we recall, however, that gravity may 
play some role. 

VI. GRANULAR CONDUCTIVITY 

To relate scalar conductivity to granular fabric, we review 
briefly the underlying theory and the mean-field approximation 
of  Batchelor and O'Brien [10]. We consider a simplified two- 
phase medium, with the continuous phase or "mat r ix"  having 
relatively small conductivity, such as a packed bed of  steel 
balls with air filling the interstitial void. We use notation appro- 
priate to electrical conduction in the following discussion, with 
th denoting electrical potential. The mean potential gradient 
will be written as (VqS), where Vth is the local electrical potential 
gradient in the medium and the brackets ( ) denote a volume 
average over the medium. The local current density J is equal 
to -koVth at a point in the matrix and -kpV~b at a point in a 
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FIG. 9. The simulated radial distribution function for 3D moderately dense- 
packed configurations of 90 spheres (discrete points), compared with the P-Y 
radial distribution function (solid curve). 

FIG. 10. Particle assemblage and equivalent resistor network. 

where Sp denotes the surface of a particle, x is the spatial 
position on Sp, and n is the unit outer normal to Sp. Noting 
that the term J • n d S  represents current passing through the 
portion dS of S r and assuming [10] that the current is localized 
at discrete points of  particle contact, one further obtains 

= l  N 
(S) ~ E  ~ xcQc, (12) 

particle. At each point on the surface of a particle, the potential 
t h and the normal component  of  J are continuous, and at each 
interior point in the particles or matrix, 

V .  J = 0, 724, = 0. (7) 

where Q, is current flowing through the contact point c for a 
given particle p and C is the number of  distinct contacts among 
the N particles. With the assumption of localized current, the 
assemblage becomes equivalent to the random resistor network 
illustrated in Fig. 10. Furthermore, for spherical particles, Xc = 
xp + Rpn, where xp is the particle centroid, and Eq. (12) becomes 

Because of the intrinsic linearity, the magnitudes of  all poten- 
tial differences are proportional to (Vth), and so for the mean 
flux we have the linear relation [10] 

( J ) =  - K *  (V~), (8) 

where the effective conductivity K* is a second-rank tensor, 
dependent on the structure of  the medium and where, by defini- 
tion, we have 

1 N l fvadv=l f ,  JdV f,, adV, ( j )  = (9) 

where V, Vp, and Vm represent the volumes of  the entire medium, 
the individual particles, and the matrix phase, respectively, and 
N is the number of  particles. In the limit of  a nonconductive 
matrix (k0 ~ 0), the first term on the right-hand side of  Eq. 
(9) vanishes, so that 

1 N 
(S) = f JdV. (10)  

On application of Eq. (7) and the Gauss divergence theorem 
to Eq. (10) (with V • xJ  = J + xV • J),  one obtains 

1 N 
(J) = ~ E  fs. xJ" ndS, (11) 

1 N C 
(13) 

since charge conservation (Kirchhoff 's  law) gives 

C C 

xpQ c = Xp ~'~ Qc = O. (14) 

We note that the above derivation also yields the stress tensor 
in a static granular assemblage as a sum of tensor products 
obtained on replacing Qc by a contact force vector [19, 21, 39]. 

As shown by Batchelor and O'Brien [10], one can represent 
the local interparticle flux Q~ in terms of a local potential 
difference and an effective contact resistance R~, which one 
can obtain for elastic spheres as follows. According to Hertzian 
theory [37, 34], two linear elastic spheres with radius R in 
contact will develop a flat contact circle of radius 

3(1 - ~_)f.R] v3 
a =  ' 4E J 

(15) 

under a normal compressive forcefo. Here, E and v are, respec- 
tively, the Young 's  modulus and Poisson's ratio. For a ~ R, 
the effective resistance for conduction across the contact circle 
is then given by [10, 30] 

Rc = l/2akp, (16) 
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where kp is the conductivity of the particle phase. However, as 
discussed below, our experimental contact resistance is found 
to be much larger than Eq. (16), which we believe can be 
attributed to surface effects such as asperities and oxide films 
[28, 29, 5, 30]. 

In order to compute the interparticle current Q,., the particle 
potentials ~bp must be determined. As in the mechanical counter- 
part, the local potentials can be additively decomposed into 
two parts: a "mean-field" contribution derived from the mean 
potential gradient and a fluctuation ~b~ necessary to satisfy the 
current balance condition within the system. The latter is ob- 
tained by solving the system of linear equations of the form of 
Eq. (1), where, now, K represents a conductance matrix, x are 
the potential fluctuations, and b is the unbalanced current. The 
matrix K becomes singular when any cluster of particles be- 
comes disconnected from the assemblage, and this singularity 
is once again resolved by means of the relaxation method. 

For the exact numerical solution of the problem we employ 
Eq. (8) and Eq. (14) to compute the effective conductivity 
tensor K*, which we can then compare to the mean-f ield theory 
[10], in which the potential difference ~bj - ~bi between particles 
i andj  is taken to be (x; - xi) • (V~b) = - 2 R n  • (Vgb), i.e., to 
the difference in potential at the two sphere centers associated 
with the mean potential gradient. With this assumption, one no 
longer has strict local charge conservation, except for certain 
periodic or "crystalline" arrays. 

It is worthwhile to record the special case of a constant 
contact resistance Re, where 

2R 
Qc = A4, = - ----nc" (Vff) 

Rc 

and where, later, we shall equate Rc with an appropriate average. 
Combining Eq. (17) and Eq. (13) leads to the result of Batchelor 
and O'Brien [ 10] for monodisperse (unisized) assemblages with 
load independent resistances 

<J) - -  R c V  - -  

and, on comparison of Eq. (18) with Eq. (8), the effective 
conductivity tensor is seen to be 

K* 2R2C - 

R,.V 

where N denotes the "fabric tensor" [35] 

1 C 
N = (ncnc) := ~ ~ ncnc, 
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FIG. 11. Comparison of the experimentally measured contact resistance 
vs. load with the theoretical prediction for Hertzian contact. 

of course, readily modify the above calculation to allow for local 
variations in R,. and Rp, as actually done in all our numerical 
computations, for which we again recall the computer program 
listing is given by Zhuang [57]. 

Faced at one stage in our study with an extremely large 
discrepancy between the experimentally measured conductivity 
and numerical simulations based on Eqs. (15)-(16), we were 
forced to conduct an experiment to determine the electrical 
contact resistance between balls as a function of normal load. 
The relationship between resistance and load, as the average 
of seven experiments, is plotted in Fig. 11, where the predictions 
from Eqs. (15)-(16) are shown for comparison. The overall 

(17) scatter in the experimental data is within 20% of the average. 
The relatively large scatter can probably be ascribed to the 
nonuniformity of the ball surfaces and associated contaminant 
films [30]. Besides the orders-of-magnitude discrepancy in val- 
ues, one can also see the very strong dependence of resistance 
on load, with a log-log slope of approximately 2.4 vs. the 
value ~ given by the Hertzian theory of Eqs. (15)-(16). 

The load-resistance curve depicted in Fig. 11 represents the 
(18) case of loading, whereas experimental observations during un- 

loading reveal resistance curves substantially below than that 
shown for loading. This hysteresis is probably due to the plastic 
deformation of asperities and the irreversible rupture of super- 
ficial oxide films during loading [30]. While a given contact 
can undergo both loading and unloading during deformation 
of the assemblage, we expect the contact region to shift from 

(19) 
point to point on the surface of a given ball due to the relative 
movement (rolling and sliding) between balls. Therefore, we 
thought it plausible to employ the loading curve of Fig. 11 for 
purposes of our numerical simulation, thereby ignoring the 
complications of an ill-defined hysteretic behavior. 

(20) 
VII. MECHANICS SIMULATION 

in which C equals the total number of contacts in the assemblage A series of numerical simulations was conducted to investi- 
(equal to N times the average coordination number). One can, gate the effects of various microstructural properties, including 
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(Coulomb) interparticle friction, nonlinear contact mechanics, 0.060 
and initial packing density on the mechanical behavior. Of  
particular interest is the Reynolds dilatancy, shear strength, and 
evolution of the granular microstructure. Simulations of  the 0.040 
standard " t r iaxia l"  (i.e., symmetric uniaxial) compression of 
soil mechanics were conducted to explore the effects of the 
initial density on mechanical behavior as well as on scalar ~ 0.020 
transport properties. For this special deformation, a brief explo- 
ration was made of the effects of  number of particles N per 
periodic cell. (Because of memory limitations on our worksta- 0.000 
tion, we were forced to employ a supercomputer for this pur- 
pose.) The computations show only a small change, a fraction 
of a percent, in computed stresses at different strains, for N 
ranging between 48 and 200. The mechanical simulations are 
discussed next while the transport properties are covered below. 
All simulation results presented here are obtained as ensemble 
averages over five realizations of initial random packings with 
specified density. 
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e- - .-o poly, p.=O.O ..........a~ 
o o mono,  p.--0.3 ~ .  a "  
a- - --o poly,  la=0.3 ~ . t r  " . 

t~ A mono,  I . t=0 .5  ~ . . a -  

t,- - -~, poly,  p=0.5 . . ~  - ' ' ~  

_ 0 _  _ 0  _ 0 .  --0- - ~  - 0 - e - ~ -  ~ _  . 0  . - 
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FIG. 12. Effect of interparticle friction on dilatancy of 3D assemblages 

in simple shear. (y denotes shear strain and e,. = In V/Vo, where V, and V 
refer to initial and current volumes, respectively.) 

A. Effect of Interparticle Friction 

This study involves both 2D and 3D mono- and poly-disperse 
assemblages subject to simple shearing under constant mean 
pressure. The main purpose of the 2D simulations was to com- 
pare against the prior results of  Bashir and Goddard [9]. The 
2D assemblages consist of  132 disks initially packed to random 
dense packing of about 0.82 area fraction. The 3D granular 
assemblages contain 48 spheres, initially packed to an approxi- 
mate dense random packing with volume fraction 0.60. By a 
scaling based on contact stiffness and particle radius, one can 
specify an extemally imposed nondimensional pressure pR/k,, 
where p, k,,, and R denote, respectively, the confining pressure, 
normal stiffness, and particle radius under which interparticle 
overlap (proportional to normal force) will not exceed about 
0.1% of particle radius, which is a nominal representation of 
"nearly r igid" particles [9]. This pressure, estimated to be 6.0 
× 10 -5 for 2D and 4.0 × 10 -5 for 3D, is employed during 
initial packing and subsequent sheafing. Both the 2D or 3D 
test assemblages are subjected to simple shear, up to 20% strain, 
with different interparticle friction coefficients under otherwise 
identical conditions. In what follows, we present only the simu- 
lation results for 3D assemblages; the results for 2D, which 
generally confirm the previous work [9], can be found in 
Zhuang [57]. 

The nondimensional particle radii are taken as unity by defi- 
nition for monodisperse systems and as 0.8, 1, and 1.25, respec- 
tively, in the polydisperse systems, which are assigned approxi- 
mately the same total volume of particles of  the three different 
sizes. In particular, we use 27 spheres of  radius 0.8, 14 spheres 
of  radius unity, and 7 spheres of  radius "1.25, Nondimensional 
normal and shear contact stiffnesses are taken as k, = 1 and 
k, = 0.8, respectively. To clarify the influence of particle friction 
on Reynolds dilatancy and yield strength of randomly dense- 

packed assemblages, we have carried out several simulations 
on mono- as well as poly-disperse assemblages, with sliding 
friction coefficients/x = 0, 0.3, and 0.5, respectively. 

The following conclusions can be drawn from the results 
presented in Figs. 12 and 13: Dilatancy increases with increas- 
ing /z, even at the inception of shearing, in agreement with 
many previous results [20, 12, 16], including those for (the 2D) 
polydisperse systems of Bashir and Goddard [9], a finding 
which is contrary to the classical Reynolds hypothesis for dense 
sphere assemblages. The stress ratio (o-~ - O'3)/p, where o-~, 
0"3, and p are major, minor, and mean compressive stress, also 
increases with increasing magnitude of /x. Polydispersity is 
seen to have a noticeable effect. 

From Fig. 14, one sees that the coordination number Z, say, 
decreases drastically in the start of  shearing, usually within first 
1% strain, indicating that significant particle rearrangement 
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FIG. 13. Effect of interparticle friction on yield strength of 3D assemblages 

in simple shear. 
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of 3D assemblages in simple shear. 
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FIG. 15. Effect of contact nonlinearity on dilatancy of 3D assemblages 
in triaxial compression. (e:: denotes the axial strain.) 

takes place early in the deformation [36, 42]. The value of Z 
then fluctuates about a roughly constant level throughout the 
subsequent deformation [ 12]. Higher interparticle friction gen- 
erally results in lower final Z values. Although Z varies with 
shear strain and interparticle friction, it is found always to be 
greater than the critical coordination number Z,. ~ d / (d  - 
1) for geometric percolation in the spatial dimension d > 1 
[26, 47]. 

The rat iof  = Z/Zmax represents the fraction of active contacts 
or "bonds" in the network of particle contacts relative to that 
of the densest possible systems, with Z,,~ equal to 6 for 2D 
triangular lattices and to 12 for 3D FCC lattices [26]. The 
computed values o f f  lie between the geometric and central- 
force elastic-percolation thresholds [26]. By contrast, we recall 
that the previous 2D simulations [9] gave asymptotic, large 
strainfvalues very close to the geometric percolation threshold 
(which is much smaller than that for central-force elastic perco- 
lation [26]). 

Based on detailed microscopic observations we find, as points 
of general qualitative agreement with several previous studies, 
that: (1) granular microstructure generally evolves such that 
contact normals concentrate in the direction of major principal 
stress during deformation [49]; (2) the assemblage is composed 
of two types of region; a skeleton composed of oriented, heavily 
stressed chains of particles, together with amorphous, less 
stressed regions surrounding this skeleton, where most of the 
breaking and making of contacts occurs while the skeleton 
remaining relatively unaltered for small incremental deforma- 
tions; (3) particle rolling is the major deformation mechanism, 
increasingly so as interparticle friction increases [43]. 

B. Ef fect  o f  Nonl inear  Contact  

Since the linear-elastic contact model offers computational 
simplicity, while providing useful qualitative insights into the 
link between micromechanical macroscopic properties [11, 12, 

20-22, 51 ] and since we are mainly interested in the ideal rigid 
particle limit, most of our simulations are carried out for this 
model. However, we felt it important to explore the effects of 
nonlinearity and for this purpose we have investigated a simple 
nonlinear contact model given by the power-law for elastic 
stiffness 

C A k , =  ~fA (21) 

where C is a material constant and f,  is normal load, with 3. = 
~-corresponding to Hertzian contact. 

A monodisperse system with 48 spheres packed to initial 
density ~b = 0.60 and with/z = 0.15 is subjected to triaxial 
compression under a constant mean confining pressure p = 
4 × 10 -5 . Values of the exponent in Eq. (21), A = 0, ~-, 
~-, and 1 were explored, with 0 representing the linear contact 
and 1 representing the strongest nonlinearity. As before, the 
tangential stiffness k, is simply taken to be 0.8k,,. 

From Fig. 15 one sees that contact nonlinearity has but 
little influence on dilatancy in the small- to intermediate- 
strain region, although some effects are observed at higher 
compressions. Moreover, it is found [57] that the average 
number of particle contacts is not strongly affected. One 
might expect that the nonlinear contact law would tend to 
make strong contacts (in terms of contact force) stronger 
and weak contacts weaker, therefore influencing the contact- 
force distribution. However, although we do indeed observe 
variations in force distribution, the different degrees of nonlin- 
earity are found to yield only a small deviation in the average 
normal force [57]. Finally, from Fig. 16, one sees that the 
strength of the assemblage tends to increase somewhat with 
extreme nonlinearity. Otherwise, the generally small effect of 
contact nonlinearity suggests to us that complicated nonlinear 
elastic contact laws are not strictly necessary for modeling 
many aspects of the granular mechanics. 
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FIG. 16. Effect of contact nonlinearity on strength of 3D assemblages in 
triaxial compression. 
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FIG. 18. Effect of initial density on density evolution of 3D assemblages 
in triaxial compression. 

C. Effect of Initial Specimen Densi~ 

To simulate the influence of  the initial void ratio or packing 
density on the mechanical and electrical conductivity, we have 
generated three random monodisperse packings of  100 spheres, 
with different initial densities, 0.52, 0.56, and 0.60, respectively. 
The friction coefficient/z is taken to be 0.15, corresponding to 
measurements on steel ball bearings discussed below. All three 
packings are subjected to triaxial compression under nondimen- 
sional confining stress o'2 = o-3 = 4 × 10 -5 normal to the 
compressional axis. 

Figures 17 and 18 indicate that for initially loose systems 
such as those with ~b = 0.52 and 0.56, that densification or 
negative dilatancy occurs initially and persists throughout the 
deformation. Thus, the potential for densification increases with 
the decrease of  the initial density as emphasized in previous 
studies [40]. On the other hand, the initially dense system, 

~b = 0.60, exhibits positive dilatancy from the very beginning 
of  the deformation. Nevertheless, the densities of three systems, 
either contracting or expanding, tend to approach the same 
"critical-state" [24] value asymptotically. 

Figure 19 shows that for loose systems the shear strength 
increases monotonically. However, for the initially dense sys- 
tem its strength increases first, until a peak value is reached; 
then it decreases. Similar observations in real triaxial compres- 
sion tests are discussed below. Again, both the loose and dense 
systems seem to possess an identical ultimate strength after a 
large deformation, as is also indicated in Ref. [40]. The initial 
coordination number increases, of course, with initial density. 
Upon deformation, the dense system initially experiences a 
significant loss in the number of  contacts, whereas the loose 
system gains contacts. However, both systems approach ap- 
proximately the same coordination number at roughly 1% axial 
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FIG. 17. Effect of initial density on dilatancy of 3D assemblages in triax- 
ial compression. 
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FIG. 19. Effect of initial density on shear strength of 3D assemblages in 
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FIG. 20. Effect of initial density on coordination number of 3D assem- 
blages in triaxial compression. 

strain and then exhibit fluctuating, slightly increasing values 
(Fig. 20). 

As an attempt to elucidate these observations, we note that 
in a loose system the initial number of interparticle contacts 
and, hence, the coordination number are low, just exceeding 
the elastic percolation threshold (at which there just begin to 
exist sample-spanning chains of frictionless particles capable 
of supporting an ambient shear stress [26]). However, owing 
to the lack of sufficient contact force from neighboring particles, 
load bearing chains are highly unstable to Euler buckling such 
that a given particle chain will generally undergo a kind of 
lateral "branching" until it becomes capable of supporting 
increased axial compressive stress [26]. Therefore, the overall 
granular structure is less stable and more likely to collapse to 
a more stable, denser system upon deformation and thereby 
to generate load-bearing capability. Such capability is further 
enhanced as the system becomes more dense. On the other 
hand, the dense system must expand in order to deform and, 
hence, loses contacts initially. Owing to the volume expansion 
against the ambient pressure, the system exhibits shear strength, 
but further dilatancy reduces the system density and decreases 
the stability of the granular chain structure and the ability to 
support the external loads. This explains the after-peak strength 
loss for dense systems illustrated by Fig. 19, which is known 
to be a feature of many real granular media [24]. 

VIII. ELECTRICAL CONDUCTIVITY 

A. Numerical Simulations 

For the purpose of comparison to our experiments, the com- 
puter code is modified specifically to simulate triaxial compres- 
sion, for an assemblage having the physical properties in Table 
I and with the experimental loading conditions as input parame- 
ters. The stress and electrical conductivity are computed simul- 
taneously: 

TABLE I 

The Physical Properties of the Steel Balls Employed 
in the Experiments 

Diameter (m) 0.00278 _+ 0.00000064 
Density (kg/m ~) 0.007667 
Elastic modulus (MPa) 1.999 × 104 
Poisson's ratio 0.29 
Friction coefficient 0.15 
Electrical conductivity (ohm • m) t 166.7 

The computed nondimensional normal forces are converted 
to actual forces by a scaling based on the particle radius and 
ambient confining pressure so that the contact resistance be- 
tween two particles can be compared to the experimentally 
determined load-resistance relation of Fig. 1 1. Any effects of 
tangential force on contact resistance are neglected. 

Turning to the axial conductivity K=, we see from Figs. 19 
and 21 the similarity between the behavior of shear strength and 
conductivity, although there is more fluctuation in conductivity 
than in strength. For the initially dense system, with ~b = 0.60, 
the conductivity increases to a peak within the first 2% of axial 
strain; then it fluctuates widely in a decreasing trend. 

Upon compression, load-bearing chains are built up gradually 
in the axial (z) direction creating more conductive pathways 
for current. Therefore, in early stages of deformation, the con- 
ductivity increases steadily despite the fact that system experi- 
ences a loss in the total number of contacts (see Fig. 14), mainly 
in the x -y  plane [57], the direction of minor principal stress. 
Owing to the dilatancy of the system (Fig. 17), these granular 
chains become progressively less stable. When the system is 
further expanded, these load-bearing chains finally buckle. The 
branching-out of chains diverts current from the preferred axial 
direction. Therefore, one observes an after-peak decrease in 
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FIG. 21. Dependence of axial conductivity on axial strain and initial den- 
sity 4~. 
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FIG. 23. Comparison of shear strength between numerical simulation and 
experiments with dirty balls (initial 05 = 0.60). 

conductivity. The subsequent buildup and buckling of new, 
heavily stressed chains is the primary cause of the fluctuations 
in conductivity. On the other hand, the densification in the 
loose systems during the deformation tends to stabilize these 
progressively loaded chains, thus resulting in a steady increase 
of  conductivity. 

The results shown in Fig. 22 are obtained from Eq. (13), 
with R,. being taken as the number average of all the computed 
individual contact resistances. If instead, R, is based on the 
resistance evaluated at the average normal contact force, then 
Eq. (13) overpredicts by roughly the same amount, with the 
fluctuation pattern being the same. Thus, the mean field theory 
of Batchelor and O'Brien can obviously be used to great advan- 
tage for a qualitative understanding of scalar transport and the 
elucidation of granular fabric. 

IX. COMPARISON TO EXPERIMENTS AND 

CONCLUSIONS 

Three triaxial compression tests have been carried out, one 
with nominally clean balls and two with nominally dirty balls, 
at approximately ~b = 0.60 as the initial density. Here, " c l ean"  
refers to the balls from which any protective oil film was 
removed with acetone and which are expected to have relatively 
little surface contamination. Unfortunately, however, the nor- 
mal load-contact  resistance relation was not experimentally 
determined immediately after the cleaning process. " D i r t y "  
refers to balls, which were exposed to the laboratory air for 
approximately four months after cleaning with acetone, which 
are expected to possess an insulating oxide film (or high contact 
resistance) and for which the load-contact  resistance relation 
(Fig. 11) and the interparticle friction coefficient were subse- 
quently measured. The experimental results for clean balls are 
given here solely for the comparison with the dirty balls [57]. 

Figures 23 and 24 indicate that the numerical simulation and 

physical experiments on dirty balls are in qualitative agreement. 
Comparison of the experimental results for clean and dirty balls 
in Fig. 24 also reveals that the individual contact resistances 
can drastically affect the overall conductivity. 

In summary, the results of the present investigation show 
that: (1) interparticle friction has great influence on Reynolds 
dilatancy for random dense-packed granular assemblages, both 
mono- as well as poly-disperse, a result that is contrary to 
Reynolds'  original hypothesis [44]; (2) the use of linear contact 
mechanics is justified near the ideal rigid-particle limit; and (3) 
scalar transport properties such as electrical conductivity can 
serve as good indicators of microstructural anisotropy and parti- 
c le-contact  topology, even when electrical contact resistance 
deviates greatly from the Hertzian contact prediction. 

APPENDIX 1: BASIC EQUATIONS AND 
THE STIFFNESS MATRIX 

During the deformation of granular assemblages, particles 
move with independent degrees of freedom and interact with 
each other only at their contact points. The assumed force-  
displacement relationship is presented here for the case of  two 
spherical particles A and B in contact, as shown in Fig. 25. 

The particle radius is denoted by R and its centroid by X. 
Upon the deformation, a particle undergoes infinitesimal incre- 
ments of  translation and rotation u and oo, respectively. The 
superscripts in Fig. 25 and in the sequel denote a given particle. 
The unit contact normal to the tangential plane is n --- (X 8 - 
X't)/lx B - xA[. The interaction between the particles depends 
on the relative motion of the contact points, with components 
of  relative displacement in the normal and tangential directions 
given, respectively, as 

A U  n = ( U  B - -  U A )  • nn (22) 
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and 

A u ,  = ( u  s - u A) - Au, ,  + R B x to  ~ + R A )< tO 4, ( 2 3 )  

w h e r e u  A s =  u s -  u A, R A = RAn,  a n d R  8 = RSn. 

These relative displacements are used to calculate increments 
of  normal and shear forces, Afn and Aft, according to 

f. = f,o + Af. (26) 

and 

f, = f o + Af,. (27) 

The normal and tangential components, f, = f~n and f, = 
f - f,,, of the force vector are both set to be zero if f ,  is 
not compressional (since cohesionless particles cannot sustain 
tensile force). A (Coulomb) sliding friction law is incorporated 
as follows: the magnitude of the shear force f, given by Eq. 
(27) is checked against the maximum possible shear force mag- 
nitude, 

(~Dmax m_  lf l, (28) 

where/z(---tan ~b~,) is the coefficient of  sliding friction (defining 
the so-called angle of  intergranular friction the). If  [f~l exceeds 
(f,) . . . .  sliding occurs at the contact point. Under this circum- 
stance, f, takes the value of ( f )  . . . .  and maintains its direction. 
Therefore, the total force and couple exerted on particle A by 
particle B are given by 

f = f,, + f, (29) 

M = R ~ × f,. (30) 

Af~ = k, Au, (24) 

and 

Af, = k, Au,, (25) 

where k. and k, denote the normal and tangential elastic stiff- 
nesses, respectively, which may be allowed to depend on Af. 
and Aft. 

Furthermore. the force increments Af~ and Af, are added. 
respectively, to the initial forces f0 and f0 to between particles 
yield the current values: 

3 

0 "-. 

A "', t . - - ' -"  

FIG. 25. Schematic of sphere interactions. 

2 

These are next decomposed into three Cartesian compo- 
nents, yielding 

F = F ° + kas Au(AB), (31) 

where, F = [ f ~ , f , f : ,  mx, my, m:], the generalized force, repre- 
sents the components of  force and moment  exerted currently 
on particle A by B. F ° = [ ~ , ~ , ~ ,  m °, m °, m °] represents the 
components of  force and moment  in the previous state. The 
matrix kas is the local contact-st iffness matrix, while Au(AB) 
is the generalized relative displacement between A and B, 

Au(AB) ------ 

u f - u~ 

u~ - u~ 

u~ - u~ 

RSto~ + RAoJ~ 

RStof + RAco A 

R S J z  + gat.oa: 

(32) 

where the subscripts denote the corresponding Cartesian com- 
ponents. 

For any particle A to be in static equilibrium, the sum of the 
generalized forces must vanish: 
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F = ~ F" + ~]  k,,B Au(AB) = 0 (33) 
B B B 

o r  

E kAt~ Au(AB) = - ~  F °. (34) 
B B 

In the current simulation, the displacement of each particle 
is additively decomposed into two components: the macroscopi- 
cally imposed mean fi defined by the global velocity gradient 
and a fluctuation u', the latter being such that the force balance 
equation (34) is satisfied. Therefore, Eq. (34) becomes 

kaB Au'(AB) = - ~  F ° - ~'~ ka,~ A~(AB) 
B B B 

(35) 

for A = 1, 2 ... . .  N, with N denoting the total number of  particles 
within the system. This leads in an obvious way to a system 
of  quasi-linear equation (1) for the (6N) fluctuations, where 
x = [u~(1), u)'.(1), u~(1), o9.'~(1), co~(1), o9~(1) . . . . .  uI(N) u((N), 
u~(N), o~',(N), w)'.(N), 6o~(N)] is the vector of  the fluctuating 
displacements and rotations and b is the unbalanced force aris- 
ing from the displacements from the prior iteration. 
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